SAFETY MATTERS: From the Eye of a Survivor *AW*, vol 29, no 3 2014

ASSESS YOUR RISK

The point of this exercise is not to get precise numbers, but to get a sense of the range of potential impacts you may encounter in the kind of turning you do.

- 1. Choose an unturned blank that is typical of what you turn. Weigh it and a finished object of similar size, using kilograms as your unit. Divide the weights—half, a third, a quarter, a fifth—to estimate the weight of typical fragments.
- 2. Convert the diameter of your blank and object to meters and multiply by π (3.14) to get their circumference.
- 3. Choose a few lathe speeds typical of what you would use for a blank of your chosen size. Divide each lathe speed by 60 to convert it to revolutions per second.
- 4. Multiply the circumference by the converted lathe speeds to get the velocities in meters per second.

My riot helmet and half-mask respirator Photo: Karen Barber

5. Find the kinetic energy (the energy of an object in motion) of the potential projectiles by multiplying mass times velocity² times $\frac{1}{2}$, or $\frac{1}{2}mv^2$. In other words, plug the velocities and the estimated weights of various fragments into the following formula:

 $0.5 \times \text{kg} \times \text{m/sec}^2 = \text{joules}$

(Notice that, in contrast to mass, velocity affects kinetic energy exponentially.)

- 6. Compare the numbers you get with the following figures:
 - 4.4 joules: the impact standard for American faceshields
 - 15.5 joules: the impact standard for European ("high energy resistant") and Australian and New Zealand ("extra high impact resistant") faceshields
 - 111.1 joules: the impact standard for American riot helmets

Is your faceshield adequate?

Comparison of kinetic energy values

Regulatory test or example	Condition	KE (joules)
Z87.1 non-impact test	1" steel ball dropped from 50"	0.8
Z87.1 high-velocity impact test: glasses	1/4" steel ball traveling 150 ft/sec	1.1
Z87.1 high-velocity impact test: faceshield	1/4" steel ball traveling 300 ft/sec	4.4
Z87.1 penetration test	500-g pointed projectile dropped from 50"	6.2
AS/NZS 1337.1 high impact resistance test EN 166 medium energy impact test	6-mm 0.86-g steel ball traveling 1 20 m/sec	6.2
AS/NZS 1337.1 extra high impact resistance test EN 166 high energy impact test	6-mm 0.86-g steel ball traveling 190 m/sec	15.5
0104.02 impact test	5.1-kg assembly traveling 6.6 m/sec	111.1
0104.02 penetration test	3-kg pointed striker dropped from 3.00 m	88.2
My accident	1-kg fragment of 10"-dia. vessel turning at 1200 rpm	127.2
Bowl fragment 1	0.05-kg fragment of 7"-dia. bowl turning at 1200 rpm	3.1
Bowl fragment 2	0.05-kg fragment of 7"-dia. bowl turning at 2200 rpm	10.5
Platter fragment 1	0.05-kg fragment of 12"-dia. platter turning at 1200 rpm	9.2
Platter fragment 2	0.2-kg fragment of 12"-dia. platter turning at 1200 rpm	36.6